
令和 7年度 微分方程式 II 小テスト No.1

　課程 　年生 学籍番号　 名前　

1 a, x0 ∈ Rとする. x = x(t)に対する次の微分方程式の初
期値問題について以下の問いに答えよ.{

x′(t) = ax(t) (t > 0) · · · (i)
x(0) = x0 (t = 0) · · · (ii)

(1) (i) を求積法によってを解き, 一般解が定数 C を用いて
x(t) = Ceat となることを確かめよ.

(2) (i)–(ii)の特解を求めよ.

(1) x ̸= 0とすると
1

x

dx

dt
= a,∫

1

x

dx

dt
dt =

∫
adt,

log |x| = at+ C1,

|x| = eat+C1 = eateC1 ,

x = ±eC1eat,

x = Ceat.

x = 0も解だが, 上の形でC = 0とすれば表現できる. よって
一般解は

x = x(t) = Ceat.

(2) (ii)からCを求めればよい. t = 0を代入すると

x(0) = Ce0

= C.

よって, 初期条件 x(0) = x0よりC(0) = x0が得られるので特
解は

x(t) = x0e
at

で求められる. 2

2 dを自然数とし, Aを d次正方行列とする. 行列 SN を

SN := I + A+
1

2!
A2 +

1

3!
A3 + · · ·+ 1

N !
AN (N ∈ N)

で定義する. このとき, {SN}はコーシー列であることを
示すことで, SN はある n次正方行列 Sに収束することを
証明せよ. ただし, 行列Aに対するノルムは次のフロベニ
ウスノルム

∥A∥ :=

√√√√ d∑
i,j=1

|aij|2, A :=


a11 a12 · · · a1d

a21 a22
...

...
. . .

...

ad1 ad2 · · · add


を用いる. またノルムの定義と共に性質 ∥AB∥ ≤ ∥A∥∥B∥
を用いてもよい.

　まず,

TN := 1 + ∥A∥+ 1

2!
∥A∥2 + · · ·+ 1

N !
∥A∥N

とおく. このとき, TN は e∥A∥の N 次近似式なのでこの数列
{TN}は e∥A∥に収束する. そこで, M,N ∈ N : N > M とす
ると

∥SN − SM∥ =

∥∥∥∥∥
N∑
k=0

1

k!
Ak −

M∑
k=0

1

k!
Ak

∥∥∥∥∥
=

∥∥∥∥∥
N∑

k=M+1

1

k!
Ak

∥∥∥∥∥
≤

N∑
k=M+1

1

k!
∥Ak∥

≤
N∑

k=M+1

1

k!
∥A∥k

= |TN − TM |.

ここで, 数列 {TN}は収束するので, コーシー列である. よって

∥SN − SM∥ ≤ |TN − TM | → 0 (N,M → +∞).

これより, 行列 {SN}も収束する. 2



4 nを自然数とし, A,Bを d次正方行列とする. AB = BA

を仮定すると
eAeB = eA+B

が成立することを証明せよ. ただし, 4についてはフロベ
ニウスノルムを用いて証明する必要は無く, 無限の項の順
序交換は形式的に認めて計算してもよい. また, 二項定理

NCk :=
N !

k!(N − k)!

を用いてもよい.

　AB = BAより

(A+B)2 = A2 + AB +BA+B2 = A2 + 2AB +B2,

(A+B)3 = A3 + 3A2B + 3AB2 +B3,

(A+B)N =
N∑
k=0

NCkA
kBN−k

を得る. よって

eA+B = I + (A+B) +
1

2!
(A+B)2 +

1

3!
(A+B)3

+
1

4!
(A+B)4 + · · ·+ 1

N !
(A+B)N + · · ·

= I + (A+B) +
1

2!
(A2 + 2AB +B2)

+
1

3!
(A3 + 3A2B + 3AB2 +B3)

+
1

4!
(A4 + 4A3B1 + 6A2B2 + 4AB3 +B4)

+ · · ·+ 1

N !

N∑
k=0

NCkA
kBN−k + · · ·

= I + (A+B) +

(
1

2!
A2 + AB +

1

2!
B2

)
+

(
1

3!
A3 +

1

2!
A2B + A

1

2!
B2 +

1

3!
B3

)
+

(
1

4!
A4 +

1

3!
A3B +

1

2!
A2 1

2!
B2 +

1

3!
B3A+

1

4!
B4

)
+ · · ·+

N∑
k=0

1

k!
Ak 1

(N − k)!
BN−k + · · ·

= I

(
I +B +

1

2!
B2 + · · ·+ 1

N !
BN + · · ·

)
+ A

(
I +B +

1

2!
B2 + · · ·+ 1

N !
BN + · · ·

)
+

1

2!
A2

(
I +B +

1

2!
B2 + · · ·+ 1

N !
BN + · · ·

)
+ · · ·+ 1

N !
AN

(
I +B +

1

2!
B2 + · · ·+ 1

N !
BN + · · ·

)
+ · · ·

=

(
I + A+

1

2!
A2 + · · ·+ 1

N !
AN + · · ·

)
×

(
I +B +

1

2!
B2 + · · ·+ 1

N !
BN + · · ·

)
= eAeB.

よって形式的ではあるが eAeB = eA+Bが示された. 2

3 Oを d次零行列, Iを d次単位行列とする. このとき

eO = I

を証明せよ. ただし, 3についてはフロベニウスノルムを
用いて証明する必要は無い.

　全てのN ∈ Nに対してON = Oであることに注意して

eO = I +O +
1

2!
O2 +

1

3!
O3 + · · ·+ 1

N !
ON + · · · = I.

よって, 形式的ではあるが eO = Iが示された. 2

5 Aを d次正方行列とする. このとき eA は逆行列をもち,

(eA)−1 = e−Aが成立することを証明せよ. ただし, 証明に
は 3と 4の結果を用いてもよい.

　Aと−Aについて, A(−A) = (−1)AA = (−A)Aより可換で
あるので 4を用いれば

eAe−A = eA+(−A) = eO

が得られる. また, 3より eO = I なので, eAe−A = I となり,

eAは正方行列なので e−Aが eAの逆行列であることを意味す
る. 2


