微分方程式II・自習シート

問1 次の f の括弧内の点における n 次近似式を, ランダウの記号 o を用いて等式で求めよ.

(1)
$$f(x) = e^{2x}$$
 $(x = 0)$

(2)
$$f(x) = \log(1+x)$$
 (x = 1)

問2 $\sin x$ の x = 0 における 2n + 1 次近似式, $\cos x$ の x = 0 における 2n 次近似式, ランダウの記号 o を用いて等式で求めよ.

問3 $A & n \times n$ 行列とする. 以後, 行列を

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \ddots & & \vdots \\ \vdots & & & \vdots \\ a_{n1} & \cdots & & a_{nn} \end{pmatrix}$$

とかくことにする. 「実数の大きさの数値化」である絶対値のように, 「行列 A の大きさ」の数値化として**ノルム** $^{1)}$ を

を定義する (A のフロベニウスノルムと呼ぶことがある). このとき, 次の行列 A, B, I に対して $\|A\|$, $\|B\|$, $\|I\|$ の値をそれぞれ求めよ.

$$A = \begin{pmatrix} 1 & 2 \\ 8 & 10 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

の行列式

$$|A| = |ad - bd|$$

は行列の大きさの数値化としては不適切である. 例えば

$$C = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

の行列式 |C| は 0 であるが,C 自身は成分がすべて 0 の行列ではなく,実数 r に対して |r|=0 ならばまたそのときに限り r=0 であるという「大きさの数値化」の前提 (ノルムの定義) を満たしていない.行列式はその行列が作る変換の面積倍率を意味している.

提出する場合は, 解答例を参考にして自分で採点をしておくこと. 提出しなくても試験で 60 点以上取れば合格です.

 $^{^{(1)}}$ 行列式 |A| とは異なることに注意. 実際, 行列 A