令和7年度 微積分及び演習 I 小テスト No.3 対策プリント

数理・知能・電子・機械・応化・環境 課程 ____ 回生

学生番号 ______ 名前 _____

 $\fbox{1}$ X, Y を集合とし, $f: X \to Y$ とする. $B_{\alpha} \subset Y$ (ただし, $\alpha \in I$ は添え字) ならば

$$f^{-1}\left(\bigcup_{\alpha\in I}B_{\alpha}\right)=\bigcup_{\alpha\in I}f^{-1}(B_{\alpha})$$

を集合の等号の定義に戻って証明せよ.

2 $a\in [0,1]$ とする. $f,g:[0,1]\to \mathbb{R}$ が点 x=a で連続ならば f+g も点 x=a で連続であることを ε - δ 論法で証明 せよ

- $\boxed{3}$ $f(x)=x^2$ とする. このとき, $f:\mathbb{R}\to\mathbb{R}$ は \mathbb{R} 上で連続であることを ε - δ 論法で証明せよ.
- $\boxed{4}$ 次の関数の x=0 における連続性と微分可能性を調べよ. 連続性の証明には ε -N 論法や ε - δ 論法を用いる必要は無い.

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$