微積分及び演習I・自習シート

問1 [高校までの復習] 次の関数を微分せよ.

(1)
$$f(x) = \frac{x}{1+x^2}$$

(2)
$$f(x) = \frac{x^2}{1+x^2}$$

(3)
$$f(x) = \frac{x^3}{1+x^2}$$

(4)
$$f(x) = \frac{1}{\sqrt{1+x^2}}$$

(5)
$$f(x) = \frac{x}{\sqrt{1+x^2}}$$

(6)
$$f(x) = \frac{x^2}{\sqrt{1+x^2}}$$

(7)
$$f(x) = \log(1 + x^2)$$

問2次の値を求めよ.

$$(1) \operatorname{Sin}^{-1}(-1)$$

(2)
$$\operatorname{Sin}^{-1}(-1/2)$$

(3)
$$\sin^{-1}(1/\sqrt{2})$$

(4)
$$Cos^{-1}(\sqrt{3}/2)$$

$$(5) \cos^{-1}(0)$$

(6)
$$Cos^{-1}(-1/\sqrt{2})$$

(7)
$$Tan^{-1}(-\sqrt{3})$$

(8)
$$Tan^{-1}(1/\sqrt{3})$$

(9)
$$Tan^{-1}(-1)$$

問3 $a\in[0,1]$ とする. $f,g:[0,1]\to\mathbb{R}$ が点 x=a で連続ならば f-g も連続であることを ε - δ 論法で示せ.

問 $a,c\in\mathbb{R}$ とする. $f:\mathbb{R}\to\mathbb{R}$ が点 x=a で連続ならば cf も点 x=a で連続であることを ε - δ 論法で示せ.

発展 $I \subset \mathbb{R}$ を区間とし, $f: I \to \mathbb{R}$ とする. 「f は I 上で連続である」とは任意の点 $a \in I$ で連続であることが定義なので、

$$\underline{\forall a \in I}, \forall \varepsilon > 0, \exists \delta_{\varepsilon,a} > 0 \text{ s.t.}$$

$$\forall x \in I : 0 < |x - a| < \delta_{\varepsilon,a}, \quad |f(x) - f(a)| < \varepsilon$$

が ε - δ 論法による厳密な定義となる.ここで, $\delta_{\varepsilon,a}$ は $\varepsilon>0$ に依存するが, $a\in I$ **にも依存することに注意する.言い換えると区間** I 上で連続の証明は点 $a\in I$ ごとに確かめるため $\delta_{\varepsilon}>0$ が点 a にも依存しているということ.この $\delta_{\varepsilon,a}$ が a に依存せずに選べるとき,すなわち

$$\forall \varepsilon > 0, \, \exists \delta_{\varepsilon} > 0 \text{ s.t.}$$

$$\forall x \in I, \forall a \in I : 0 < |x - a| < \delta_{\varepsilon}, \quad |f(x) - f(a)| < \varepsilon$$

を満たすとき、「f は I 上で一様連続である」という. 「 $\forall a \in I$ 」の位置に注意. 次の問いに答えよ.

- (1) $a \in I$ とする. f(x) = 2x は点 x = a において連続であることを証明せよ.
- f(x) = 2x は \mathbb{R} において一様連続であることを証明せよ.
- (3) $g(x) = x^2$ は \mathbb{R} において連続であることを証明せよ.
- (4) $g(x) = x^2$ は I := [0,1] において一様連続であることを証明せよ.
- (5) $g(x) = x^2$ は $I := [0, \infty)$ において一様連続でないことを証明せよ.