微積分及び演習I・自習シート

問1 X, Y を集合とし, $f: X \to Y$ とする. 次を証明せよ.

(1) $B \subset Y$ $x \in \mathcal{Y}$

$$f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$$

解答例 (C) を示す. $x \in f^{-1}(Y \setminus B)$ とする. 逆像の定義より $x \in X$ かつ $f(x) \in Y \setminus B$ である. つまり, 差の定義より $f(x) \in Y$ かつ $f(x) \notin B$ である. このとき, 逆像の定義より $x \notin f^{-1}(B)$ である. よって,

$$x \in X \setminus f^{-1}(B)$$

を得る. よって(⊂)が成立.

(つ) を示す. $x \in X \setminus f^{-1}(B)$ とする. 差の定義より $x \in X$ かつ $x \notin f^{-1}(B)$ である. このとき, 逆像の定義より $f(x) \notin B$ である. 写像の定義から $f(x) \in Y$ なので,

$$f(x) \in Y \setminus B$$

つまり,逆像の定義より

$$x \in f^{-1}(Y \setminus B)$$

を得る. よって (⊃) が成立.

以上により, 等号が成立.

(2) $B_{\alpha} \subset Y$ (ただし, $\alpha \in I$ は添え字) ならば

$$f^{-1}\left(\bigcup_{\alpha\in I}B_{\alpha}\right)=\bigcup_{\alpha\in I}f^{-1}(B_{\alpha})$$

解答例 (\subset) を示す. $x \in f^{-1}(\bigcup_{\alpha \in I} B_{\alpha})$ とする. 逆像の定義より, $(x \in X \text{ かつ})$ $f(x) \in \bigcup_{\alpha \in I} B_{\alpha}$ である. さらに, 和集合の定義より $\exists \alpha_x \in I \text{ s.t.}$

$$f(x) \in B_{\alpha_x}$$

つまり, 逆像の定義より $x \in f^{-1}(B_{\alpha_x})$. ゆえに和集合の定義より

$$x \in \bigcup_{\alpha \in I} f^{-1}(B_{\alpha})$$

を得る. よって(⊂)が成立.

 (\supset) を示す. $x \in \bigcup_{\alpha \in I} f^{-1}(B_{\alpha})$ とする. 和集合の定義より, $\exists \alpha_x \in I$ s.t.

$$x \in f^{-1}(B_{\alpha_x})$$

つまり,逆像の定義より

$$f(x) \in B_{\alpha_x}$$

再び和集合の定義より $f(x) \in \bigcup_{\alpha \in I} B_{\alpha}$ である. ゆえに逆像の定義より

$$x \in f^{-1}(\bigcup_{\alpha \in I} B_{\alpha})$$

を得る. よって (⊃) が成立.

以上により, 等号が成立.

(3) $A_{\alpha} \subset X$ (ただし, $\alpha \in I$ は添え字) ならば

$$f\left(\bigcup_{\alpha\in I}A_{\alpha}\right)=\bigcup_{\alpha\in I}f(A_{\alpha})$$

解答例 (\subset) を示す. $y \in f(\bigcup_{\alpha \in I} A_{\alpha})$ とする. 像の定義より, $\exists x \in \bigcup_{\alpha \in I} A_{\alpha}$ s.t. y = f(x) である. ここで, 和集合の定義より $\exists \alpha_0 \in I$ s.t.

$$x \in A_{\alpha_0}$$

つまり、像の定義より $y \in f(A_{\alpha_0})$. ゆえに和集合の定義より

$$y \in \bigcup_{\alpha \in I} f(A_{\alpha})$$

を得る. よって(⊂)が成立.

 (\supset) を示す. $y \in \bigcup_{\alpha \in I} f(A_{\alpha})$ とする. 和集合の定義より $\exists \alpha_0 \in I$ s.t.

$$y \in f(A_{\alpha_0})$$

ここで、像の定義より $\exists x \in A_{\alpha_0}$ s.t. y = f(x) である. この x について

$$x \in \bigcup_{\alpha \in I} A_{\alpha}$$

なので、像の定義より

$$y \in f\left(\bigcup_{\alpha \in I} A_{\alpha}\right)$$

を得る. よって (⊃) が成立.

以上により, 等号が成立.

(4) $A_{\alpha} \subset X$ (ただし, $\alpha \in I$ は添え字) ならば

$$f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\subset\bigcap_{\alpha\in I}f(A_{\alpha})$$

解答例 $y\in f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)$ とする.像の定義より $\exists x\in\bigcap_{\alpha\in I}A_{\alpha}$ s.t. y=f(x).この x について共通部分の定義より

$$\forall \alpha \in I, \quad x \in A_{\alpha}$$

つまり、像の定義より

$$\forall \alpha \in I, \quad y \in f(A_{\alpha})$$

$$y \in \bigcap_{\alpha \in I} f(A_{\alpha})$$

を得る. よって成立.

問2 問1の(4)の逆向きの包含関係は一般には成立しない。その例を見つける。 $f: \mathbb{R} \to \mathbb{R}$ を $f(x) = x^2$ とする。

$$f(A_1 \cap A_2) \not\supset f(A_1) \cap f(A_2)$$

となるような A_1 と A_2 の例を見つけよ.

解答例 例えば $A_1 := (-2,1), A_2 := (-1,3)$ とすると

$$f(A_1) = [0, 4), \quad f(A_2) = [0, 9)$$

よって

$$f(A_1) \cap f(A_2) = [0, 4)$$

である. 一方, $A_1 \cap A_2 = (-1,1)$ であるので

$$f(A_1 \cap A_2) = [0, 1)$$

となる. ゆえに, $f(A_1 \cap A_2) \supset f(A_1) \cap f(A_2)$ は成立していない. 問3 $a,b,c,d \in \mathbb{R}$ とし, $f: \mathbb{R}^2 \to \mathbb{R}^2$ を

$$f\left(\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)\right) := \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

で定義する $^{1)}$. このとき, $ad-bc\neq 0$ ならば f が全単射であることを証明せよ.

解答例 まず全射について考える.

$$x := \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

とおく. $f(\mathbb{R}^2)=\mathbb{R}^2$ を示せばよい. 必ず $f(\mathbb{R}^2)\subset\mathbb{R}^2$ は成立するので, $f(\mathbb{R}^2)\supset\mathbb{R}^2$ を示せばよい. $y\in\mathbb{R}^2$ とする. $y\in f(\mathbb{R}^2)$ を示せばよい, つまり $\exists x\in\mathbb{R}^2$ s.t. y=f(x) を示せばよい.

$$y := \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right)$$

とおくと, それは

1)

$$\begin{cases} ax_1 + bx_2 = y_1, \\ cx_1 + dx_2 = y_2 \end{cases}$$

を満たすかどうか、つまり連立方程式が解けるかどうかと同値である. 上を d 倍、下を b 倍して

$$\begin{cases} adx_1 + bdx_2 = dy_1, \\ bcx_1 + bdx_2 = by_2, \end{cases}$$

より消去法によって

$$(ad - bc)x_1 = dy_1 - by_2$$

を得る. ここで, $ad - bc \neq 0$ より両辺をわって,

$$x_1 = \frac{1}{ad - bc}(dy_1 - by_2),$$

また, 上に代入して

$$\frac{a}{ad - bc}(dy_1 - by_2) + bx_2 = y_1,$$

$$bx_2 = \frac{ad - bc}{ad - bc}y_1 - \frac{a}{ad - bc}(dy_1 - by_2) = \frac{-bc}{ad - bc}y_1 + \frac{ab}{ad - bc}y_2,$$

$$x_2 = \frac{1}{ad - bc}(-cy_1 + ay_2)$$

を得る. つまり $\exists x \in \mathbb{R}^2$ s.t. y = f(x) が示された. すなわち $ad - bc \neq 0$ ならば f は全射であることが分かる.

次に単射について考える.

$$x := \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \tilde{x} = \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix}$$

とおく. 単射の定義の対偶から

$$f(x) = \begin{pmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{pmatrix}, \quad f(\tilde{x}) = \begin{pmatrix} a\tilde{x}_1 + b\tilde{x}_2 \\ c\tilde{x}_1 + d\tilde{x}_2 \end{pmatrix}$$

に対して, $f(x) = f(\tilde{x})$ ならば $x = \tilde{x}$ を示せばよい. $f(x) = f(\tilde{x})$ とすると

$$\begin{cases} ax_1 + bx_2 = a\tilde{x}_1 + b\tilde{x}_2, \\ cx_1 + dx_2 = c\tilde{x}_1 + d\tilde{x}_2. \end{cases}$$

上をd倍,下をb倍して

$$\begin{cases} adx_1 + bdx_2 = ad\tilde{x}_1 + bd\tilde{x}_2, \\ bcx_1 + bdx_2 = bc\tilde{x}_1 + bd\tilde{x}_2, \end{cases}$$

より消去法によって

$$(ad - bc)x_1 = (ad - bc)y_1$$

を得る. ここで, $ad - bc \neq 0$ より両辺をわって,

$$x_1 = \tilde{x}_1$$

を得る. 次にこれを上に代入すれば $b \neq 0$ のときに $x_2 = \tilde{x}_2$ が得られ、下に代入すれば $d \neq 0$ のときに $x_2 = \tilde{x}_2$ を得る. つまり $b \neq 0$ もしくは $d \neq 0$ のどちらかが仮定されていれば $x_2 = \tilde{x}_2$ が得られることになるが、b = d = 0、つまりそのどちらも成立しないときは $ad - bc \neq 0$ を満たさなくなるので、これらの仮定は全て $ad - bc \neq 0$ の仮定でまとめられる. すなわち、 $ad - bc \neq 0$ ならば f は単射であることが分かる.

別解 線形代数の知識を使えば証明は簡潔になる. 実際、

$$A := \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

とおくと, f(x)=Ax を意味し, $ad-bc\neq 0$ の条件から A は正則行列すなわち $A^{-1}A=AA^{-1}=E(単位行列)$ を満たす行列 A^{-1} が存在する. また A^{-1} は

$$\frac{1}{ad-bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

で得られていた.上記解答例に合わせて議論していくと,任意の $y\in\mathbb{R}^2$ に対して, $y\in f(\mathbb{R}^2)$,つまりある $x\in\mathbb{R}^2$ が存在して y=f(x) となるかどうかを考える. $A^{-1}A=E$ であったことに注意して

$$Ax = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = y$$

の左から *A*⁻¹ をかければ

$$A^{-1}Ax = A^{-1}y,$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

を得る. すなわち $ad-bc\neq 0$ ならば f は全射であることが分かる. 単射についても $f(x)=f(\tilde{x})$ ならば $x=\tilde{x}$ を示せばよいが, $Ax=A\tilde{x}$ の両辺に A^{-1} を写像としてかければ $x=\tilde{x}$ を得る. すなわち, $ad-bc\neq 0$ ならば f は単射であることが分かる.

問 $4 f: X \to Y, q: Y \to Z$ とし、さらに $h: X \to Z$ を

$$h(x) := g(f(x)) \quad (x \in X)$$

と定義する(合成写像). (1)と(2)を証明せよ.

(1) h が単射であれば、f も単射である.

解答例 背理法で示す. もし f が単射でないならば $\exists x_1, x_2 \in X$ s.t.

$$x_1 \neq x_2$$
 かつ $f(x_1) = f(x_2)$.

このとき, $g: Y \to Z$ は写像なので $g(f(x_1)) = g(f(x_2))$ を満たす, つまり

$$h(x_1) = q(f(x_1)) = q(f(x_2)) = h(x_2)$$

となり、hが単射であることに矛盾する.よってfは単射である.

(2) *h* が全射であれば, *q* も全射である.

解答例 g(Y)=Z, すなわち, $g(Y)\subset Z$ かつ $g(Y)\supset Z$ を示せばよい. 像の定義から $g(Y)\subset Z$ は常に成り立つ. 次に $g(Y)\supset Z$ を示す. $z\in Z$ とする. このとき $\exists y\in Y$ s.t.

$$z = g(y)$$

であることを示せばよい. $z \in Z$ とすると, h が全射より $\exists x \in X$ s.t.

$$z = h(x)$$
.

このとき, $f: X \to Y$ より y = f(x) とおくと $y \in Y$ を満たす, つまり

$$z = h(x) = g(f(x)) = g(y)$$

となり, $g(Y) \supset Z$ が証明できたので, g(Y) = Z, すなわち g は全射である.