微積分及び演習I・自習シート

問1 X を全体集合とし, $A,B \subset X$, $A,B \neq \emptyset$ とする. 次の 3 条件は同値 $^{1)}$ であることを示せ.

- (1) $A^c \cup B = X$
- (2) $A \subset B$
- $(3) A \cap B^c = \emptyset$

証明 「(1) ならば (2)」を示す. (1) を仮定する. 任意の $x \in A$ に対して, $x \in B$ を示す. $x \in A$ とする. $A \subset X$ より, $x \in X$ なので (1) を用いれば $x \in A^c \cup B$ となる. つまり $x \in A^c$ または $x \in B$. しかし, 今は $x \in A$ を仮定しているので $x \notin A^c$ より $x \in B$ しかありえない. ゆえに $A \subset B$.

- 「(2) ならば (3)」を示す. (2) を仮定する. 背理法で示す. もしも $A \cap B^c \neq \emptyset$ ならば, ある元 $x \in A \cap B^c$ が存在する. この元 x は $x \in A$ かつ $x \in B^c$ を満たすが, $A \subset B$ より $x \in B$ かつ $x \in B^c$ となり矛盾. よって $A \cap B^c = \emptyset$.
- 「(3) ならば(1)」を示す.
- (C)を示す. $x \in A^c \cup B$ とする.
 - (i) $x \in A^c \cap \Sigma \mathfrak{F}, A^c = X \setminus A \subset X \mathfrak{J}, x \in X$.
- (ii) $x \in B$ のとき, $B \subset X$ より, $x \in X$.

以上より $x \in X$. (X は全体集合なので、つねに $x \in X$ となる.) よって $A^c \cup B \subset X$ が成立.

- (\supset) を示す. $x \in X$ とする.
 - (i) $x \in B$ のとき, 和集合の定義より $x \in A^c \cup B$ となる.
- (ii) $x \notin B$ のとき, $x \in B^c$ であるが, さらに $x \notin A$ となる. 実際, もしそうでないならば $x \in B^c$ かつ $x \in A$ となるが, 共通部分の定義より $x \in A \cap B^c$ となり, (3) に矛盾する. ゆえに $x \in A^c$ を得るので, 和集合の定義より $x \in A^c \cup B$ となる.

いずれの場合にも $x \in A^c \cup B$ となり, $A^c \cup B \supset X$ を得る.

以上により(1)の等号が成立する.

ゆえに3条件は同値となる.

「(3) ならば(1)」の別解 (3) を仮定する. ド・モルガンの法則より

$$(A \cap B^c)^c = A^c \cup B$$

であり, $\emptyset^c = X$ より (1) が成立.

問2 $E_1 \subset \mathbb{R}, E_2 \subset \mathbb{R}$ とし、それぞれ E_1 と E_2 は空ではない有界な集合とする.例題を参考に (1)–(3) を証明せよ.

提出する場合は、解答例を参考にして自分で採点をしておくこと. 提出しなくても試験で 60 点以上取れば合格です.

 $^{^{(1)}}$ 「 $^{(1)}$ ならば $^{(2)}$ 」,「 $^{(2)}$ ならば $^{(3)}$ 」,「 $^{(3)}$ ならば $^{(1)}$ 」を $^{(3)}$ つを示せばよい.

(例題) $E := \{x + y : x \in E_1, y \in E_2\}$ とおく²⁾. このとき

$$\inf E \ge \inf E_1 + \inf E_2$$

解答例 $\alpha := \inf E_1, \beta := \inf E_2$ とおく. 最大下界 (下限) の定義より,

$$\forall x \in E_1, x > \alpha$$
 かつ $\forall y \in E_2, y > \beta$.

ここで, E の定義より $\forall x \in E$, $\exists x_z \in E_1$, $\exists y_z \in E_2$ s.t.

$$z = x_z + y_z$$

なので 3)

$$z = x_z + y_z \ge \alpha + \beta.$$

つまり, $\alpha + \beta$ は E の下界の1つである. 一方, $\inf E$ は E の最大下界なので

$$\inf E \ge \alpha + \beta = \inf E_1 + \inf E_2.$$

(1) さらに E_1 \subset E_2 とする. このとき

$$\inf E_1 \ge \inf E_2$$

解答例 $\beta := \inf E_2$ とおく. 最大下界 (下限) の定義より,

$$\forall x \in E_2, x > \beta.$$

ここで、 $\forall y \in E_1$ 、仮定より $y \in E_2$ なので、

$$y \ge \beta$$
.

つまり, β は E_1 の下界の 1 つである. 一方, $\inf E_1$ は E_1 の最大下界なので

$$\inf E_1 \geq \beta = \inf E_2.$$

(2) $E := \{x + y : x \in E_1, y \in E_2\}$ とおく. このとき

$$\sup E \le \sup E_1 + \sup E_2$$

解答例 $\alpha := \sup E_1, \beta := \sup E_2$ とおく. 最小上界 (上限) の定義より,

$$\forall x \in E_1, x \leq \alpha$$
 かつ $\forall y \in E_2, y \leq \beta$.

ここで, E の定義より $\forall x \in E$, $\exists x_z \in E_1$, $\exists y_z \in E_2$ s.t.

$$z = x_z + y_z$$

 $E=\{z: \exists x\in E_1, \exists y\in E_2 \text{ s.t.} z=x+y\}$ $E=\{z: \exists x\in E_1, \exists y\in E_2 \text{ s.t.} z=x+y\}$ $E=\{z: \exists x\in E_1, \exists y\in E_2 \text{ or} z=x+y\}$ の元 $E=\{z: \exists x\in E_1, \exists y\in E_2 \text{ or} z=x+y\}$ の元 $E=\{z: \exists x\in E_1, \exists y\in E_2 \text{ s.t.} z=x+y\}$

なので ⁴⁾

$$z = x_z + y_z \le \alpha + \beta$$
.

つまり, $\alpha+\beta$ は E の上界の 1 つである. 一方, $\sup E$ は E の最小上界なので

$$\sup E \le \alpha + \beta = \sup E_1 + \sup E_2.$$

 $(3) -E_1 := \{-x : x \in E_1\}^{5}$ とおく. このとき

$$\sup(-E_1) = -\inf E_1.$$

解答例 $\alpha := \sup(-E_1)$ とおく. 最小上界 (上限) の定義より

$$\begin{cases} (i) & \forall x \in (-E_1), x \le \alpha; \\ (ii) & \forall \varepsilon > 0, \exists x_{\varepsilon} \in (-E_1) \text{ s.t. } \alpha - \varepsilon < x_{\varepsilon}. \end{cases}$$

ここで、 $\forall y \in E_1, -y \in (-E_1)$ なので (i) より

$$-y \leq \alpha$$
,

つまり

$$y \ge -\alpha$$

を満たす. 次に (ii) より $\forall \varepsilon > 0, \exists x_{\varepsilon} \in (-E_1)$ s.t. $\alpha - \varepsilon < x_{\varepsilon}$. つまり

$$-\alpha + \varepsilon > -x_{\varepsilon}$$
.

ここで, $-x_{\varepsilon} \in E_1$ なので, $y_{\varepsilon} := -x_{\varepsilon}$ とおけば, 以上をまとめると

$$\begin{cases} (i) & \forall y \in E_1, y \ge -\alpha; \\ (ii) & \forall \varepsilon > 0, \exists y_{\varepsilon} \in E_1 \text{ s.t. } -\alpha + \varepsilon > y_{\varepsilon}. \end{cases}$$

と言える. つまり $-\alpha$ は E_1 の最大下界であるので

$$-\alpha = \inf E_1$$
,

つまり

$$\alpha = -\inf E_1$$
.

問3 $A, B \subset \mathbb{R}$ を空でない有界集合とする. このとき次を証明せよ.

- (1) $\inf A < \sup A$.
- (2) $\forall a \in A, \forall b \in B, a < b$ が成立するならば $\sup A < \inf B$.
- $(3) \forall a \in A, \exists b_a \in B \text{ s.t. } a \leq b_a$ が成立するならば $\sup A \leq \sup B.$

 $^{^{(4)}}E$ の元 z は必ず E_1 の元と E_2 の元の和で書けるというのが E の定義. $^{(5)}$ いいかえると $-E_1:=\{z: ^\exists x\in E_1 \text{ s.t.} z=-x\}$

解答例 (1) $x \in A$ とする. $\sup A$ と $\inf A$ の定義より,

$$\inf A \le x, \quad x \le \sup A.$$

つまり, $\inf A \leq \sup A$.

(2) 仮定より, $a \in A$ とすると次が成立する:

$$\forall b \in B, a \leq b.$$

よってaはBの下界の1つである. 一方 $\inf B$ はBの最大下界なので

$$a \leq \inf B$$

が成立する. 次に $a \in A$ は任意に選べるので, 上の式より inf B は A の上界の 1 つである. 一方 $\sup A$ は最小上界であったので

 $\sup A \leq \inf B$

を得る.

(3) sup B の定義より

 $\forall b \in B, b \leq \sup B.$

仮定より, $\forall a \in A$, $\exists b_a \in B$ s.t.

$$a \leq b_a$$

であるが, $b_a \in B$ より

$$a < b_a < \sup B$$

を得る. よって, $\sup B$ は A の上界の 1 つである. 一方 $\sup A$ は最小上界であったので

$$\sup A < \sup B$$

を得る.

注 (2) と (3) の証明の違いをはっきりと理解すべきである. (3) の証明中,

$$\forall a \in A, \exists b_a \in B, \text{s.t. } a < b_a$$

が成立するからと言って, b_a が A の上界の 1 つとは言えないことに注意が必要. b_a は a に 依存して決まる値である. a が変われば b_a も変わってしまうので b_a がどのような $a \in A$ をも上から押さえる値 (A の上界) とは言えない. a に依存しないそれより大きな $\sup B$ が A の上界の 1 つであると言っている.