位相入門II・自習シート

問1 $A \subset \mathbb{R}^2$ とし, $B \subset \mathbb{R}^2$ を $B \subset A$ を満たす任意の開集合とする. このとき, $B \subset A^i$ を 証明せよ 1)

証明 $B \subset \mathbb{R}^2$ を $B \subset A$ を満たす任意の開集合とする. $B \subset A^i$ を示す. $x \in B$ とする. B は開集合なので $\exists \varepsilon_x > 0$ s.t.

$$N(x; \varepsilon_x) \subset B$$
.

 $CCC, B \subset A$ $CCC, B \subset A$

$$N(x; \varepsilon_x) \subset A$$

といえる. つまり, x は A の内点である. よって, $x \in A^i$. つまり, $B \subset A^i$.

別解 仮定より $B \subset A$ で、内部の性質より $B^i \subset A^i$ が得られる. さらに B は開集合なので同値性から $B^i = B$ が得られるので $B = B^i \subset A^i$ が示される.

問2 $A \subset \mathbb{R}^2$ とする. A の閉包 \overline{A} は A を含む最小の閉集合であることを証明せよ.

証明 $B \subset \mathbb{R}^2$ を $A \subset B$ を満たす任意の閉集合とする. このとき, $\overline{A} \subset B$ を示すことで, \overline{A} が A を含む閉集合の中で最小であることを示す. そこで, 対偶に相当する $B^c \subset (\overline{A})^c$ を示す. $x \in B^c$ とする. B は閉集合なので B^c は開集合である. よって $\exists \varepsilon_x > 0$ s.t.

$$N(x; \varepsilon_x) \subset B^c$$
.

ここで, $A \subset B$ なので $A^c \supset B^c$ から,

$$N(x; \varepsilon_x) \subset A^c$$

といえる. つまり, x は A の外点である. よって, $x \in A^e$. $(\overline{A})^c = A^e$ なので $x \in (\overline{A})^c$, つまり,

$$B^c \subset (\overline{A})^c$$

が成立する. これより $\overline{A} \subset B$ が成立する.

まとめると, A を含むどのような閉集合 B をえらんできても, $\overline{A} \subset B$ となるので, \overline{A} が 閉集合 (補集合が開集合) であることから, \overline{A} は A を含む最小の閉集合であるといえる. \square

問3 $A \subset \mathbb{R}^2$ とする. 次の (i) と (ii) は同値であることを**問2の結果を用いて**証明せよ.

- (i) A は閉集合;
- (ii) $\overline{A} = A$.

提出する場合は、解答例を参考にして自分で採点をしておくこと. 提出しなくても試験で60点以上取れば合格です.

 $^{^{1)}}$ この主張は「A の内部 A^i は A に含まれる最大の開集合である」ことを意味している.言い換えると「A に含まれる開集合の中で A^i よりも大きなものは存在しない」ということを意味している.

- **証明** (i) ならば (ii) を示す. A を閉集合とする. \overline{A} の定義より $\overline{A} \supset A$ は常に成り立つ. 一方, 問 2 より \overline{A} は A を含む最小の閉集合なので, A 自身が閉集合であると仮定しているので $\overline{A} \subset A$ を得る (閉集合どうしの比較). 以上より $\overline{A} = A$.
- (ii) ならば (i) を示す. $\overline{A}=A$ を仮定する. 問 2 より閉包 \overline{A} は A を含む最小の閉集合であることが分かっているので、これは A が閉集合であることを意味する. よって成立. \Box