集合と論理・自習シート

問1 A_{α} , B を集合とする. ただし, $\alpha \in I$ とし I は添え字集合である. 次を証明せよ:

(1)

$$B \cap \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (B \cap A_{\alpha}).$$

(2)

$$B \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (B \setminus A_{\alpha}).$$

(3)

$$B \cup \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} (B \cup A_{\alpha}).$$

解答例 (1) (\subset) を示す. $x \in B \cap (\bigcup_{\alpha \in I} A_{\alpha})$ とする. $x \in B$ かつ $x \in \bigcup_{\alpha \in I} A_{\alpha}$, つまり, 和集合の定義より $\exists \alpha \in I \text{ s.t. } x \in A_{\alpha}$. よって, $x \in B \cap A_{\alpha}$. すなわち, 和集合の定義より

$$x \in \bigcup_{\alpha \in I} (B \cap A_{\alpha})$$

となり

$$B \cap \left(\bigcup_{\alpha \in I} A_{\alpha}\right) \subset \bigcup_{\alpha \in I} (B \cap A_{\alpha})$$

が成立.

 (\supset) を示す. $x \in \bigcup_{\alpha \in I} (B \cap A_{\alpha})$ とする. 和集合の定義より $\exists \alpha \in I \text{ s.t. } x \in B \cap A_{\alpha}$, つまり $x \in B$ かつ $x \in A_{\alpha}$. 再び和集合の定義より $x \in \bigcup_{\alpha \in I} A_{\alpha}$. よって

$$x \in B \cap \left(\bigcup_{\alpha \in I} A_{\alpha}\right)$$

となり

$$B \cap \left(\bigcup_{\alpha \in I} A_{\alpha}\right) \supset \bigcup_{\alpha \in I} (B \cap A_{\alpha})$$

が成立.

以上により

$$B \cap \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (B \cap A_{\alpha}).$$

(2) (\subset) を示す. $x \in B \setminus (\bigcap_{\alpha \in I} A_{\alpha})$ とする. $x \in B$ かつ $x \notin \bigcap_{\alpha \in I} A_{\alpha}$, つまり $\exists \alpha \in I$

s.t. $x \notin A_{\alpha}$ が成立する (実際, もしそうでないならば, $\forall \alpha \in I, x \in A_{\alpha}$ となるが, そのとき $x \in \bigcap_{\alpha \in I} A_{\alpha}$ となり矛盾). つまり, $x \in B \setminus A_{\alpha}$. よって, 和集合の定義より

$$x \in \bigcup_{\alpha \in I} (B \setminus A_{\alpha})$$

となり

$$B \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) \subset \bigcup_{\alpha \in I} (B \setminus A_{\alpha})$$

が成立.

 (\supset) を示す. $x \in \bigcup_{\alpha \in I} (B \setminus A_{\alpha})$ とする. 和集合の定義より $\exists \alpha \in I$ s.t. $x \in B \setminus A_{\alpha}$. よって, $x \in B$ かつ $x \notin A_{\alpha}$, つまり $x \notin \bigcap_{\alpha \in I} A_{\alpha}$ (実際, もしそうでないならば, $x \in \bigcap_{\alpha \in I} A_{\alpha}$ となるが, そのとき $\forall \alpha \in I, x \in A_{\alpha}$ となり矛盾). よって

$$x \in B \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right)$$

となり

$$B \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) \supset \bigcup_{\alpha \in I} (B \setminus A_{\alpha})$$

が成立.

以上により

$$B \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (B \setminus A_{\alpha}).$$

(3) (\subset) を示す. $x \in B \cup (\bigcap_{\alpha \in I} A_{\alpha})$ とする. 和集合の定義より $x \in B$ または $x \in \bigcap_{\alpha \in I} A_{\alpha}$. (i) $x \in B$ のとき, $\forall \alpha \in I$, $x \in B \cup A_{\alpha}$. 共通部分の定義より

$$x \in \bigcap_{\alpha \in I} (B \cup A_{\alpha}).$$

(ii) $x\in\bigcap_{\alpha\in I}A_\alpha$ のとき, $\forall \alpha\in I,\,x\in A_\alpha$, つまり $x\in B\cup A_\alpha$. 共通部分の定義より

$$x \in \bigcap_{\alpha \in I} (B \cup A_{\alpha}).$$

(i), (ii) より

$$x \in \bigcap_{\alpha \in I} (B \cup A_{\alpha})$$

となり

$$B \cup \left(\bigcap_{\alpha \in I} A_{\alpha}\right) \subset \bigcap_{\alpha \in I} (B \cup A_{\alpha})$$

が成立.

- () を示す. $x \in \bigcap_{\alpha \in I} (B \cup A_{\alpha})$ とする. 共通部分の定義より, $\forall \alpha \in I, x \in B \cup A_{\alpha}$.
- (i) $x \in B$ のとき, $x \in B \cup (\bigcap_{\alpha \in I} A_{\alpha})$.
- (ii) $x \notin B$ のとき, $\forall \alpha \in I, x \in A_{\alpha}$. (実際, もしそうでないなら, $\exists \alpha_0 \in I \text{ s.t. } x \notin A_{\alpha_0}$ となるが, そのとき $x \notin B \cap A_{\alpha_0}$ となり, 仮定に矛盾.) よって $x \in \bigcap_{\alpha \in I} A_{\alpha}$. すなわち

$$x \in B \cup \left(\bigcap_{\alpha \in I} A_{\alpha}\right).$$

$$x \in B \cup \left(\bigcap_{\alpha \in I} A_{\alpha}\right)$$

となり

$$B \cup \left(\bigcap_{\alpha \in I} A_{\alpha}\right) \supset \bigcap_{\alpha \in I} (B \cup A_{\alpha})$$

が成立.

以上より

$$B \cup \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} (B \cup A_{\alpha}).$$

問2 A_n を空でない集合とし、 $\forall n \in \mathbb{N}, A_{n+1} \subset A_n$ と仮定する. 集合 C_n を次の様に定義する:

$$C_1 := \emptyset, \quad C_n := A_1 \setminus A_n \quad (n \ge 2).$$

このとき, 次の(1),(2)を証明せよ.

(1)

$$\forall n \in \mathbb{N}, \quad C_n \subset C_{n+1}.$$

$$\bigcup_{n\in\mathbb{N}} C_n = A_1 \setminus \bigcap_{n\in\mathbb{N}} A_n.$$

解答例 (1) n=1 のとき, 空集合 \emptyset はどんな集合であっても部分集合になるので, $\emptyset \subset A_1 \backslash A_2$ より

$$C_1 \subset C_2$$

が成立. n > 2 のとき,

$$C_{n+1} \subset C_{n+2}$$

を示す.

$$A_1 \setminus A_{n+1} \subset A_1 \setminus A_{n+2}$$

を示せばよい. $x \in A_1 \setminus A_{n+1}$ とすると, 集合の差の定義より

$$x \in A_1$$
 かつ $x \notin A_{n+1}$.

仮定より $x \notin A_{n+2}$ (もしそうでないなら, $x \in A_{n+2}$ だが, 仮定 $A_{n+2} \subset A_{n+1}$ より, $x \in A_{n+1}$ となり矛盾). ゆえに

$$x \in A_1 \setminus A_{n+1}$$

となり,

$$A_1 \setminus A_{n+1} \subset A_1 \setminus A_{n+2}$$
.

(2) (\subset) を示す. $x \in \bigcup_{n \in \mathbb{N}} C_n$ とする. 和集合の定義より $\exists n \in \mathbb{N} \text{ s.t.}$

 $x \in C_n$.

つまり, $x \in A_1 \setminus A_n$ より, $x \in A_1$ かつ $x \notin A_n$. ゆえに

$$x \notin \bigcap_{n \in \mathbb{N}} A_n.$$

よって

$$x \in A_1 \setminus \bigcap_{n \in \mathbb{N}} A_n$$

より

$$\bigcup_{n\in\mathbb{N}} C_n \subset A_1 \setminus \bigcap_{n\in\mathbb{N}} A_n$$

が成立.

() を示す. $x \in A_1 \setminus \bigcap_{n \in \mathbb{N}} A_n$ とする. $x \in A_1$ かつ $x \notin \bigcap_{n \in \mathbb{N}} A_n$. このとき, $\exists n \in \mathbb{N}$ s.t.

$$x \notin A_n$$
.

ゆえc $x \in A_1 \setminus A_n$. つまり, $x \in C_n$ なので

$$x \in \bigcup_{n \in \mathbb{N}} C_n$$

より

$$\bigcup_{n\in\mathbb{N}} C_n \supset A_1 \setminus \bigcap_{n\in\mathbb{N}} A_n$$

が成立..

以上より

$$\bigcup_{n\in\mathbb{N}} C_n = A_1 \setminus \bigcap_{n\in\mathbb{N}} A_n.$$

問3 X を全体集合とし, $A,B\subset X,\,A,B\neq\emptyset$ とする. 次の 3 条件は同値 $^{1)}$ であることを示せ.

- (1) $A^c \cup B = X$
- (2) $A \subset B$
- (3) $A \cap B^c = \emptyset$

証明 「(1) ならば (2)」を示す. (1) を仮定する. 任意の $x \in A$ に対して, $x \in B$ を示す. $x \in A$ とする. $A \subset X$ より, $x \in X$ なので (1) を用いれば $x \in A^c \cup B$ となる. つまり $x \in A^c$ または $x \in B$. しかし, 今は $x \in A$ を仮定しているので $x \notin A^c$ より $x \in B$ しかありえない. ゆえに $A \subset B$.

- 「(2) ならば (3)」を示す. (2) を仮定する. 背理法で示す. もしも $A \cap B^c \neq \emptyset$ ならば, ある元 $x \in A \cap B^c$ が存在する. この元 x は $x \in A$ かつ $x \in B^c$ を満たすが, $A \subset B$ より $x \in B$ かつ $x \in B^c$ となり矛盾. よって $A \cap B^c = \emptyset$.
- 「(3) ならば(1)」を示す.
- (\subset) を示す. $x \in A^c \cup B$ とする.

- (i) $x \in A^c \cap \Sigma \mathfrak{F}$, $A^c = X \setminus A \subset X \mathfrak{J}$, $x \in X$.
- (ii) $x \in B$ のとき, $B \subset X$ より, $x \in X$.

以上より $x \in X$. (X は全体集合なので、つねに $x \in X$ となる.) よって $A^c \cup B \subset X$ が成立.

- (\supset) を示す. $x \in X$ とする.
 - (i) $x \in B$ のとき, 和集合の定義より $x \in A^c \cup B$ となる.
- (ii) $x \notin B$ のとき, $x \in B^c$ であるが, さらに $x \notin A$ となる. 実際, もしそうでないならば $x \in B^c$ かつ $x \in A$ となるが, 共通部分の定義より $x \in A \cap B^c$ となり, (3) に矛盾する. ゆえに $x \in A^c$ を得るので, 和集合の定義より $x \in A^c \cup B$ となる.

いずれの場合にも $x \in A^c \cup B$ となり, $A^c \cup B \supset X$ を得る. 以上により (1) の等号が成立する.

ゆえに3条件は同値となる.